Intro to Machine Learning Bootcamp

Get started with machine learning using Python with a hands-on, in-person course with expert instructor Ted Petrou. Bootcamps range in duration between one and five days.

Comprehensive hands-on course

Get a comprehensive introduction to machine learning using Python with engaging live coding, practical exercises, and an expert instructor. Walk away with a solid grasp of the fundamentals and a direct path towards mastery.

Trusted Expert

Ted Petrou teaches all classes and has over 1,000 hours of live, in-person instruction experience. He is the author of numerous books including Master Machine Learning with Python and is the creator of the libraries Dexplo and Dexplot. Ted is constantly improving and upgrading the material to ensure it is of the highest quality.

Hands-on Exercises

Watching others code gives the false impression of learning. In reality, learning is demonstrated when you complete tasks yourself. During class, you will be given ample time to complete exercises and projects. Ted is very dedicated during this time to ensure students get the help they need.

Certificate of Completion

Mastering the fundamentals of machine learning is not possible in such a short course. However, upon completion, you will be given a direct path towards continuing your education. Completing this path will earn you a certificate of completion.

Course Description

The following description is for a full five-day course. Shorter duration bootcamps cover portions of material from different days. Visit their page to see the exact course description.

Before the course

  • Installation - You will be given detailed instructions on how to install Python onto your machine and set up an environment to run all the code during class.
  • Juptyer Notebooks - We will be using the excellent Jupyter Notebook to run most of the code during class. It provides an interactive coding environment to quickly execute code, get feedback, and make notes.
  • Assignment - You will be given an assignment on how to use Jupyter Notebooks and write Markdown that is expected to be completed before the start of the course.
  • Private Slack Channel - Upon registration, you be given access to Ted's private Slack channel where you can directly communicate with him and ask questions about the course.
  • Machine Learning Notes - You will get a digital copy (complete with a PDF and Jupyter Notebooks) of all the official notes for the course.

Day 1

  • The Machine Learning Model - Models are anything that help us represent the real world. You will learn how machine learning models are a subset of mathematical models that learn from data.
  • Estimators - We use the excellent scikit-learn library to handle all of our machine learning. scikit-learn uses a generic class of objects called estimators that do all of the machine learning as well as other tasks that learn from data. You will learn the three step process common to all estimators - import, instantiate, fit.
  • Linear regression - You will learn how to model data with linear regression, a simple and practical model that is a useful starting point before diving into more advanced models. You will learn how the parameters of the model are fit and understand what it means to minimize squared error.
  • Model Evaluation - The goal of machine learning is to build a model that provides us intelligence on data that it has yet to encounter. You will learn how to determine how well a model is likely to perform on unseen data by properly evaluating it with techniques such as cross validation.
  • Model Selection - You will learn how to choose 'better' models by selecting combinations of hyper-parameter values that yield good cross-validated results.

Day 2

  • Transformers - We take a step back to learn how to transform our data before machine learning so that we can build a better model. You will learn about different transformations such as filling in missing values and standardizing features. 
  • Machine Learning Pipelines - You will learn how to build machine learning pipelines that can handle both data transformations and machine learning all with a single estimator.
  • The ColumnTransformer - With the release of scikit-learn version 0.20, the ColumnTransformer was made available to provide a much easier and direct way to apply different transformations to different features of our data. This greatly simplified the workflow and allowed us to build a single object containing all the transformation and machine learning steps.
  • Model persistence - Building a model is great fun, but we need a way to access it in the future. You will learn how to save a model as a file and retrieve it any time you need to make a new prediction.

Day 3

  • Penalized Regression - You will learn to reduce over-fitting during training by applying a penalty term that is proportional to the size of linear regression coefficients.
  • Bias-Variance Tradeoff - Penalizing models can reduce their predictive power, but it can also produce more stable models. You will learn about this balance between predictability and model stability which is referred to as the bias-variance tradeoff.
  • Feature engineering - Creating new features is one of the best ways to build a better model. You will learn strategies to engineer new features from existing ones to improve results.

Day 4

  • Complete Machine Learning Pipeline - We will spend time putting together all of the components of the course up to this point to build a single complete machine learning pipeline.
  • Kaggle Competition - To further help you practice all of the material covered in the course, you will enter a machine learning competition offered on Kaggle. You will learn best practices on how to manage your models and results.

Day 5

  • Classification - We will explore classification, a separate class of supervised learning where the labels for each observation are discrete categories. You will learn how to use several different types of models.  
  • Error Metrics - Classification models use different error metrics to evaluate model performance than regression. You will learn how these error metrics can impact model evaluation.
  • Classification Project - You will build a machine learning pipeline for a classification problem which will closely resemble those built for the regression problems from the previous days.

After the course 

  • Certificate of completion - Upon conclusion of the course, you will be given a direct path towards mastering the fundamentals of machine learning using Python. If you go on to complete all the tasks on this path, you will receive a certificate of completion.
  • Lifetime access to material - You will always have access to the material after the course has completed. Ted upgrades and adds to his material on a regular basis. You will always have immediate access to the latest updates.
  • Lifetime Slack Access - You will always have access to Slack allowing you to interact with Ted and all previous students.

Target Student

The Intro to Machine Learning Bootcamp targets those who have little to no machine learning experience, but do understand the fundamentals of programming in Python. If you do not feel comfortable with the basics of Python, then this course is not for you. Consider taking the Intro to Python Bootcamp first which will give you all the skills needed to prepare for this course.

Interactive Class

Class time is divided between live coding sessions delivered by Ted and hands-on practice exercises and projects that you complete. During the live coding, you are provided an outline of the topics that Ted will cover as a Jupyter Notebook allowing you to code right along with him, exploring how the commands work, and ask questions.

During student exercises, you will be writing Python code to solve machine learning problems. Ted is always available to provide help directly at your seat and is constantly seeking out students who may be in need of extra support.

Class Notes

Everyone who registers gets a digital copy of the class notes which contain a PDF and many Jupyter Notebooks with detailed explanations of the material. There is more material available than what is possible to be covered in class. You will have permanent access to this material.

About the Instructor

This course is taught by Ted Petrou, an expert at Python, data exploration and machine learning. Ted is the author of the highly rated text Pandas Cookbook. Ted has taught hundreds of students Python and data science during in-person classroom settings. He sees first hand exactly where students struggle and continually upgrades his material to minimize these struggles by providing a simple and direct path forward.

Ted is one of the foremost authorities on using the pandas library to do data analysis with his blog posts totaling well over 1 million views. He is also a prolific contributor on Stack Overflow having answered over 400 questions. He is an enthusiastic instructor and dedicates his time to helping students at their desk during exercises to ensure understanding.

Ted holds a master's degree in statistics from Rice University and is the author of Exercise Python, Master Data Analysis with Python, and Master Machine Learning with Python.

It's Fun!

Part of the intrigue of an in-person class is the social interaction and camaraderie formed between yourself and the other students. This fellowship is mainly absent when taking an online class or watching a recorded video. Many friendships and potential career opportunities are formed between the students that attend Ted's classes. 

And if you are looking for proof, just take a look at the immense joy radiating from the faces of the students in the picture to the left.

Former Student Sayantan Mitra

Hear Sayantan's experience taking the bootcamp and then transitioning to a teaching assistant.

 

Frequently Asked Questions

If you have a more specific question, or just want to chat with Ted, click the chatbox in the corner and he'll answer your question as soon as he can.

Ted began programming 22 years ago by building games on his Texas Instruments graphing calculator and has been programming ever since. 

He has taught over 1,000 hours of live in-person python, data science, and machine learning. He is constantly striving to learn more, refine his material, and produce the absolute best possible class each time he teaches.

Ted's biggest accomplishments in Python have been authoring the Dexplo and Dexplot libraries that are meant as alternatives to pandas and seaborn. Ted has answered over 400 questions on Stack Overflow

Yes, you can. Just send me a message by clicking the chatbox below and I'll connect you to a former student who can answer some of your questions. If you prefer, you can also email me directly at [email protected]

There are plans to make a similar course available online for those that want to learn from the comfort of their own home. The current course offered on this page is only available as an in-person class.

No, not at this time. The course is reasonably priced and the plan is to raise prices once there is more visibility. Once prices are raised closer to the market average, discounts will be given to students or unemployed.

Yes, I am available for corporate training and can customize a syllabus that best suits the needs of your group. Please contact me directly at [email protected] for any corporate training inquiries.

Close

50% Complete

Two Step

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.