Master Machine Learning with Python

by
Ted Petrou

© 2019 Ted Petrou All Rights Reserved

Contents

I Introduction to Machine Learning 1
1 Course Data 3
1.1 Introducing the Ames, Iowa Housing Dataset 3
1.2 The data dictionary 4
2 Learning vs Machine Learning 7
2.1 What is Learning? 7
2.2 What is Machine Learning? 7
2.3 The two types of machine learning 8
2.4 Terminology 9
3 The Machine Learning Model 11
3.1 What is a model? 11
3.2 Machine learning models 11
3.3 Create each model 12
3.4 Plotting a range of predictions 13
4 Assessing task performance 15
4.1 Assessing regression task performance 15
4.2 Comparing model performance 18
4.3 Exercises 24
5 Exploratory Data Analysis 25
5.1 Essential data information 25
5.2 Kinds of data 26
5.3 Univariate analysis 27
5.4 Multivariate analysis 39
5.5 Using pivot tables for three or more variables 42
5.6 Correlation to SalePrice 42
5.7 Continuing EDA 43
II Linear Regression 45
6 Linear Regression 47
6.1 The linear regression model 47
6.2 Propose search area for w_{0} and w_{1} 49
6.3 Plot the model along with the actual data 51
6.4 R-squared - a slightly different error metric 52
6.5 Exercises 56
7 Linear Regression Widget 57
8 Linear Regression with scikit-learn 59
8.1 The scikit-learn Estimator 59
8.2 The three-step process for each estimator - Import, Instantiate, Fit 60
8.3 What happens during fit? 63
8.4 Exercises 64
9 Prediction and Performance Evaluation 65
9.1 Repeating the three step machine learning process 65
9.2 Evaluating the performance of our predictions 67
9.3 Exercises 67
10 Multiple Linear Regression 69
10.1 Same Goal - minimize squared error 69
10.2 Choose features to build a model 69
10.3 Import, Instantiate, Fit 70
10.4 Make predictions 70
10.5 Evaluating model performance 71
10.6 Comparing multivariate and univariate model 72
10.7 Multiple linear regression model interpretation 72
10.8 Exercises 73
11 Establishing a Baseline 75
11.1 How to establish a baseline? 76
11.2 The dummy module 76
11.3 Exercises 76
12 What it means to be a linear model 79
12.1 Linear regression is more flexible than a straight line 80
12.2 Create new input data 81
12.3 Feature Engineering 82
12.4 Exercises 82
III More Supervised Learning Models 85
13 K-Nearest Neighbors 87
13.1 How KNN works 87
13.2 KNN in pandas 87
13.3 KNN with multiple features 89
13.4 Visualizing KNN 90
13.5 Use Scikit-Learn 92
13.6 Measuring Performance of KNN 93
13.7 Notes on KNN 93
13.8 Distance calculation on features of different scale 94
13.9 The fewer the neighbors the higher the variance 94
13.10Exercises 95
14 Decision Trees 97
14.1 How a decision tree is created 98
14.2 Step 6 - Repeat the above steps for each node until some stopping criterion is met 103
14.3 Use scikit-learn to create a decision tree 107
14.4 Exercises 109
15 Random Forests 111
15.1 Random forests are a collection of decision trees 111
15.2 Random Forest in Scikit-Learn 112
15.3 Random forests build weak learners, why are they good? 115
15.4 Exercises 115
IV Model Evaluation 117
16 Evaluating Model Performance 119
16.1 First idea - split data into a training and test set 119
16.2 Fit model just on the training data 121
16.3 Next Idea - Cross Validation 122
16.4 K-Fold Cross Validation in Scikit-Learn 122
16.5 Other flavors of cross validation 123
16.6 Cross validation on other models 124
16.7 No model is returned 125
16.8 Exercises 126
17 Evaluation Metrics 127
17.1 Different metrics with cross validation 129
17.2 Exercises 131
V Model Selection 133
18 Hyperparameter Tuning 135
18.1 Hyperparameters vs Parameters 135
18.2 Overfitting 135
18.3 Inspecting the decision tree 137
18.4 Change hyperparameters to reduce overfitting 138
18.5 Model selection 140
18.6 Optimizing other hyperparameters 141
18.7 Setting multiple hyperparameters simultaneously 143
18.8 Hyperparameter tuning with k-nearest neighbors 145
18.9 Hyperparameter tuning linear regression 147
18.10Setting hyperparameters is like setting specifications for a car 147
18.11Exercises 148
19 Automating Hyperparameter Tuning 149
19.1 The GridSearchCV meta-estimator 149
19.2 Grid searching multiple hyperparameters 152
19.3 Grid searching is computationally expensive 154
19.4 Reduce computation time with RandomizedSearchCV 155
19.5 Using different metrics when grid searching 158
19.6 Hyperparameter tuning is helpful but not the most important thing 159
19.7 Exercises 159
VI Data Transformations 161
20 Missing Value Imputation 163
20.1 Imputation in scikit-learn 164
20.2 Common mistake - filling with mean of new data 168
20.3 Summary of simple imputation 169
20.4 K-nearest neighbor imputation 169
20.5 Iterative imputation (experimental) 172
20.6 Exercises 173
21 Feature Scaling 175
21.1 Comparing numbers 175
21.2 Common feature scaling 175
21.3 Feature scaling in scikit-learn 176
21.4 Machine learning with scaled features 180
21.5 Linear regression coefficients using scaled data 184
21.6 Exercises 185
22 Simple Pipelines 187
22.1 Successive transformations without a Pipeline 187
22.2 Automating transformations with the Pipeline 188
22.3 Machine learning pipelines 189
22.4 Exercises 192
23 Grid Searching Pipelines 193
23.1 Using GridSearchCV on a pipeline 194
23.2 Exercises 195
24 Categorical Data 197
24.1 Encoding 198
24.2 Inverting the encoding 203
24.3 Ordinal Encoding 204
24.4 Machine learning with categorical data 205
24.5 Using features with different transformations 205
24.6 Exercises 206
25 The ColumnTransformer 207
25.1 Add transformation group to scale the continuous features 210
25.2 Machine learning after transforming 211
25.3 Create a pipeline within the ColumnTransformer 212
25.4 Grid searching the final pipeline 217
25.5 Exercises 217

