$299.00 USD

An account already exists with this email address. Is this you? Sign in

Sign in

Intro to Data Science Bootcamp - New York City, Nov 6-7, 2019

When: November 6-7, 2019 10 AM – 4 PM

Where: 265 W. 37th St., New York, NY

General Admission: $299

Bootcamp Details

Get introduced to Data Science using Python with a hands-on, in-person bootcamp with expert instructor Ted Petrou.

Before the course

  • Installation - You will be given detailed instructions on how to install Python onto your machine and set up an environment to run all the code during class.
  • Juptyer Notebooks - We will be using the excellent Jupyter Notebook to run most of the code during class. It provides an interactive coding environment to quickly execute code, get feedback, and make notes.
  • Assignment - You will be given an assignment on how to use Jupyter Notebooks and write Markdown that is expected to be completed before the start of the course.
  • Private Slack Channel - Upon registration, you be given access to Ted's private Slack channel where you can directly communicate him and ask him questions about the course.
  • Essential Pandas Commands - You will get a digital copy of the first four parts (300 pages) of Master Data Analysis with Python by Ted Petrou. There are nearly 100 exercises along with detailed solutions. You will also have access to 13 hours of video that cover all the material from these parts.

Day 1

  • pandas DataFrames - The pandas library is a popular and powerful library to analyze data. We will learn about the DataFrame, the main container of data with lots of functionality to analyze data. To use the DataFrame effectively, you must be aware of its component - the index, columns, and values. We will learn commands that are used often when first reading in data into a pandas DataFrame.
  • Selecting subsets of data - One of the most common and basic data analysis tasks is to select a certain subset of the data. This could be particular rows, columns, or both rows and columns. There are unfortunately many ways to select subsets of data. We will cover the best and most efficient ways to do so.
  • Series operations - A single column of a pandas DataFrame may be extracted as a Series object. This object is very similar to a DataFrame, with the vast majority of its attributes and methods overlapping. The simplest analysis we can perform involves operating on this single column of data. We learn how to call methods that aggregate, and return a single value, as well as those that do not aggregate and return more than a single value.
  • String and Datetime methods - Columns containing strings or datetimes are processed very differently than numeric columns. We learn about specific accessors that provide us with special methods just for these types of data.
  • Entire DataFrame operations - After understanding how to operate on a single column of data, we move to operations that involve multiple columns in a DataFrame. Operating on multiple columns opens up the possibility of changing the direction of the operation. 

Day 2

  • Grouping - All the operations used above were applied to all values of a Series or DataFrame. You will learn how to split your data into groups based on the unique values of one or more columns. This 'grouping' allows you to run different calculation for independent groups within your data.
  • Pivot tables - Grouping data often results in a summary that is difficult for humans to read. You will learn how to create pivot tables to present your data in a format that is easier to interpret.
  • Visualization -  Data visualization is one of the most effective ways to present the findings of an analysis. You will learn how to produce informative visualizations with pandas.
  • Create your own data analysis - As a capstone project, you will use all of the skills gained to produce your own data analysis on a real-word dataset.

After the course 

  • Certificate of completion - Upon conclusion of the course, you will be given a direct path towards mastering the fundamentals of data science using Python. If you go on to complete all of the tasks on this path, you will receive a certificate of completion.
  • Continual access to material - You will always have access to the material after the course has completed. Ted upgrades and adds to his material on a regular basis. You will always have immediate access to the latest updates.
  • Continual Slack Access - You will also have lifetime access to Slack allowing you to interact with Ted along with all of the previous students.

Target Student

The Intro to Data Science Bootcamp targets those who have little data science experience, but do understand the fundamentals of programming in Python. If you do not feel comfortable with basic Python, then this course is not for you. Consider taking the Intro to Python Bootcamp first which will give you all the skills needed to prepare for this course.

Interactive Class

Class time is divided between live coding sessions delivered by Ted and hands-on practice exercises and projects that you complete. During the live coding, you are provided an outline of the topics that Ted will cover as a Jupyter Notebook. During this time, you can code right along with Ted, exploring how the commands work, and ask questions.

During student exercises, you will be writing Python code to solve data analysis problems. Ted is always available to provide help directly at your seat and is constantly seeking out students who may be in need of extra support.

Get a copy of Essential Pandas Commands

Everyone who registers gets access to the course Essential Pandas Commands, a large part from the book Master Data Analysis with Python by Ted Petrou with 300+ pages, nearly 100 exercises, projects and detailed solutions. It contains many more topics that are not able to be covered during class. You will have lifetime access to this course and any future updates to it.

About the Instructor

This course is taught by Ted Petrou, an expert at Python, data exploration and machine learning. Ted is the author of the highly rated text Pandas Cookbook. Ted has taught hundreds of students Python and data science during in-person classroom settings. He sees first hand exactly where students struggle and continually upgrades his material to minimize these struggles by providing a simple and direct path forward.

Ted is one of the foremost authorities on using the pandas library to do data analysis. His blog posts have totaled well over 1 million views. He is also a prolific contributor on Stack Overflow having answered over 400 questions. He is an enthusiastic instructor and dedicates his time to helping students at their desk during exercises to ensure understanding.

Ted holds a master's degree in statistics from Rice University and is the author of Exercise Python and Master Machine Learning with Python.

Refunds are available up to 30 days prior to the start of the event