$199.00 USD

An account already exists with this email address. Is this you? Sign in

Sign in

Intro to Machine Learning - Houston, Oct 11, 2019

When: October 11, 10 AM - 4 PM

Where: Residence Inn, 2939 Westpark Dr., Houston, TX

General Admission: $199

Bootcamp Details

Get started with machine learning using Python with a hands-on, in-person course with expert instructor Ted Petrou.

Before the course

  • Installation - You will be given detailed instructions on how to install Python onto your machine and set up an environment to run all the code during class.
  • Juptyer Notebooks - We will be using the excellent Jupyter Notebook to run most of the code during class. It provides an interactive coding environment to quickly execute code, get feedback, and make notes.
  • Assignment - You will be given an assignment on how to use Jupyter Notebooks and write Markdown that is expected to be completed before the start of the course.
  • Private Slack Channel - Upon registration, you be given access to Ted's private Slack channel where you can directly communicate with him and ask questions about the course.
  • Machine Learning Notes - You will get a digital copy (complete with a PDF and Jupyter Notebooks) of all the official notes for the course.

Day 1

  • The Machine Learning Model - Models are anything that help us represent the real world. You will learn how machine learning models are a subset of mathematical models that learn from data.
  • Estimators - We use the excellent scikit-learn library to handle all of our machine learning. scikit-learn uses a generic class of objects called estimators that do all of the machine learning as well as other tasks that learn from data. You will learn the three step process common to all estimators - import, instantiate, fit.
  • Linear regression - You will learn how to model data with linear regression, a simple and practical model that is a useful starting point before diving into more advanced models. You will learn how the parameters of the model are fit and understand what it means to minimize squared error.
  • Model Evaluation - The goal of machine learning is to build a model that provides us intelligence on data that it has yet to encounter. You will learn how to determine how well a model is likely to perform on unseen data by properly evaluating it with techniques such as cross validation.
  • Model Selection - You will learn how to choose 'better' models by selecting combinations of hyper-parameter values that yield good cross-validated results.
  • Transformers - We take a step back to learn how to transform our data before machine learning so that we can build a better model. You will learn about different transformations such as filling in missing values and standardizing features. 
  • Machine Learning Pipelines - You will learn how to build machine learning pipelines that can handle both data transformations and machine learning all with a single estimator.

After the course 

  • Certificate of completion - Upon conclusion of the course, you will be given a direct path towards mastering the fundamentals of machine learning using python. If you go on to complete all the tasks on this path, you will receive a certificate of completion.
  • Lifetime access to material - You will always have access to the material after the course has completed. Ted upgrades and adds to his material on a regular basis. You will always have immediate access to the latest updates.
  • Lifetime Slack Access - You will lifetime access to Slack allowing you to interact with Ted and all previous students.

Target Student

The Intro to Machine Learning Bootcamp targets those who have little to no machine learning experience, but do understand the fundamentals of programming in Python. If you do not feel comfortable with the basics of Python, then this course is not for you. Consider taking the Intro to Python Bootcamp first which will give you all the skills needed to prepare for this course.

Interactive Class

Class time is divided between live coding sessions delivered by Ted and hands-on practice exercises and projects that you complete. During the live coding, you are provided an outline of the topics that Ted will cover as a Jupyter Notebook allowing you to code right along with Ted, exploring how the commands work, and ask questions.

During student exercises, you will be writing Python code to solve machine learning problems. Ted is always available to provide help directly at your seat and is constantly seeking out students who may be in need of extra support.

About the Instructor

This course is taught by Ted Petrou, an expert at Python, data exploration and machine learning. Ted is the author of the highly rated text Pandas Cookbook. Ted has taught hundreds of students Python and data science during in-person classroom settings. He sees first hand exactly where students struggle and continually upgrades his material to minimize these struggles by providing a simple and direct path forward.

Ted is one of the foremost authorities on using the pandas library to do data analysis with his blog posts totaling well over 1 million views. He is also a prolific contributor on Stack Overflow having answered over 400 questions. He is an enthusiastic instructor and dedicates his time to helping students at their desk during exercises to ensure understanding.

Ted holds a master's degree in statistics from Rice University and is the author of Exercise Python and Master Machine Learning with Python.

It's Fun!

Part of the intrigue of an in-person class is the social interaction and camaraderie formed between yourself and the other students. This fellowship is mainly absent when taking an online class or watching a recorded video. Many friendships and potential career opportunities are formed between the students that attend Ted's classes. 

And if you are looking for proof, just take a look at the immense joy radiating from the faces of the students in the picture above.

Refunds are available up to 30 days prior to the start of the event